
SWEN-261
Introduction to Software 
Engineering
Department of Software Engineering
Rochester Institute of Technology

Reviewing OO Concepts

Users want to draw 
circles onto the 
display canvas.

public class Circle {
// more code here

}



OO Programming is about visualizing a class, modeling 
the class and then coding the class.
§Programming is and will always be a mental activity.
§UML modeling gives shape to your mental model.

• To make your mental model more concrete
• To validate your mental model with stakeholders
• To share with other developers

§ The UML model acts as a guide during development.

2



The object-oriented paradigm is based on several basic concepts.

§ Object identity
§ Abstraction
§ Encapsulation
§ Information hiding

§ Associations
§ Inheritance
§ Polymorphism

3

§ These include:

Imagine a drawing application in which the user can place shapes on a 
canvas. Let's start with a circle.



All OO programming starts with classes and objects.

§A class is a template for run-time objects.
§Use UML class notation to model your mental model of a circle.
§ Java classes implement these models.

4

Users want to draw 
circles onto the 
display canvas.

public class Circle {
// more code here

}



One class may have many unique objects.

5

public void make_multiple_objects() {
Circle c1 = new Circle();
Circle c2 = new Circle();
Circle c3 = new Circle();
if (c1 != c2) {

// Two distinct objects have different identities.
}

}



A large part of object-oriented design is about assigning 
responsibilities to classes.
§Considering a circle, the user will need to:

• Select a circle by clicking on it.
• Move a circle by dragging it to a new position.
• Scale the circle by dragging the edge.

§Of course the set of behaviors is totally dependent upon the domain of 
the specific application.  For example a CAD app also provides:
• Show circumference and area of a circle
• Align circles and with other shapes to a grid
• Calculate unions, intersections, and exclusions between circles and other 

shapes
§We'll talk about design more fully later but for

now let’s focus on OO concepts and UML.

6



Objects perform behaviors defined by their class.

§ Look to the verbs to identify behaviors.
§As an artist I also need to:

• Select a circle by clicking on it.
• Move a circle by dragging it to a new position.
• Scale the circle by dragging the edge.

§ This starting point forms a sketch of a Java class.

7

public class Circle {
void draw() { /* TBD */ }
boolean hasPoint() { /* TBD */ }
void move() { /* TBD */ }
void scale() { /* TBD */ }

}



Objects use attributes defined in the class while 
performing behaviors.
§ Include the known attributes of an object in the class definition.
§ Identify the data types for each attribute.

• Might be "primitives" like int and String
• Or it might be other domain types, like Position 

§Keep the attributes hidden using private

8

public class Circle {
private Position center;
private int radius;
// more code here

}



Design the class interface to provide the behaviors that the client 
needs. 
§Getters and setters are not benign!

• Provide them only when absolutely necessary
§Provide semantically interesting methods

• Don't use setCenter(), rather the circle movesTo() a postion
§Be particularly careful about exposing the class' data structures like 

maps, sets, lists, etc.
• Don't provide getters and setters for these

9



OK, let's go back to our developer.  She now needs to 
design a Rectangle class.

10

Users want to draw 
rectangles onto the 
display canvas. And 

select, move and scale 
them.

Do you notice any 
duplication with 
Circle?



There's a principle in software development: Don't repeat 
yourself.
§Both Circle and Rectangle have a position.
§ They have move methods and other methods with identical 

signatures.

§What should you do to not repeat yourself?

11



Pull shared attributes and behaviors into a super class.

12

The drawing app now deals 
with two kinds of shapes: 

circles and rectangles.



Should the super class be abstract?

§Specifically for the drawing app, can you add a "shape" (ie, a generic 
shape) to the canvas?
• If yes, then it can not be abstract.
• If no, then restrict the ability to instantiate the Shape class by making it 

abstract.

13



Use italics on labels for abstract "things".

14

public abstract class Shape {
protected Position position;

protected Shape(final Position position) {
this.position = position;

}
public void move(Position position) {

this.position = position;
}
public abstract void draw();
// more code not shown

}

Make the class 
abstract.

Make all 
constructors 
protected.

Make some methods 
abstract.



Here's the code for the Circle subclass.

public class Circle extends Shape {

private int radius;

public Circle(final Position center, final int radius) {

super(center);

this.radius = radius;

}

public void draw() { /* TBD */ }

public void scale(float factor) {

this.radius = (int) (radius * factor);

}

public boolean hasPoint(Position p) {

return p.distanceTo(position) <= radius;

}
}

15

Use the extends keyword to allow the 
Circle class to inherit the attributes and 

methods of the super class: Shape.

Use the super keyword to invoke 
the Shape constructor.

You can use protected members of 
the Shape class.



Our developer has been busy and has created the 
following Java/Swing application architecture.

16

Arrows indicate direction for navigation.
DrawingUI has a reference (can reach) the 
DrawingCanvas

Lines indicate association

Numbers indicate multiplicities
Each Shape is on only one DrawingCanvas
DrawingCanvas has zero or more Shape
objects.

The role name indicates the name of the attribute
shapes is the name of the Shape attribute in 
DrawingCanvas



This simple system exhibits additional object-oriented 
programming concepts.

17

The Circle and Rectangle classes 
each define different implementations of 
the draw() method because you draw 
circles and rectangles differently.

The Graphics object to draw on is 
passed into the draw() methods in 
DrawingCanvas and the Shape
implementations.



public class DrawingCanvas {
private Set<Shape> shapes = new HashSet<>();

public void addShape(final Shape s) {
shapes.add(s);

}

public void draw(Graphics g) {
// Draw each shape

for (Shape s : shapes) {

s.draw(g);

}
}

}

The DrawingCanvas class draws a set of shapes.

18

s is defined as a Shape object on which the 
draw() method is called. How does the 
Circle.draw() method get called for circles, 
and the Rectangle.draw() method for 
rectangles?



The lecture reviewed OO concepts and used defensive 
programming practices.

§ Object identity
§ Encapsulation
§ Information hiding
§ Inheritance
§ Abstraction
§ Associations
§ Polymorphism

19

OO Concepts Reviewed Defensive programming

§ Private/protected attributes 
and methods

§ Final attributes and parameters
§ Minimized use of getters and 

setters
§ Hide internal data structures


